Budding yeast as a screening tool for discovery of nucleoside analogs for use in HSV-1 TK suicide-gene therapy.
نویسندگان
چکیده
We present a fast, convenient and inexpensive method that allows the automated, large-scale screening of chemical libraries for compounds that are converted by the herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) into inhibitors of cell growth. The method is based on the use of budding yeast (Saccharomyces cerevisiae) transformed with the HSV-1 TK gene on a multicopy plasmid. Eight nucleoside analogs (acyclovir, ganciclovir, penciclovir, lobucavir, brivudin, sorivudine, IVDU and ara-T), for which the cytostatic action against mammalian cells expressing the HSV-1 TK gene has been well documented, were studied for their inhibitory effect on the growth of yeast expressing the viral TK. These nucleoside analogs had little or no inhibitory effect on the growth of yeasts transformed with the empty vector, but inhibited to a significant extent the growth of yeast expressing the viral TK. Use of HSV-1 TK-expressing yeast allows quick screening in multi-well plate format for compounds with potential use in HSV-1 TK suicide gene therapy. The method may also be used as a tool to selectively suppress or arrest the growth of one population of yeast out of mixed yeast cell cultures.
منابع مشابه
Mutation of Gln125 to Asn selectively abolishes the thymidylate kinase activity of herpes simplex virus type 1 thymidine kinase.
The broad substrate specificity of herpes simplex virus type 1 (HSV-1) thymidine kinase (TK) has provided the basis for selective antiherpetic therapy and, more recently, suicide gene therapy for the treatment of cancer. We have now constructed an HSV-1 TK mutant enzyme, in which an asparagine (N) residue is substituted for glutamine (Q) at position 125, and have evaluated the effect of this am...
متن کاملCreation of drug-specific herpes simplex virus type 1 thymidine kinase mutants for gene therapy.
Herpes simplex virus type 1 (HSV-1) thymidine kinase is currently used as a suicide agent in the gene therapy of cancer. This therapy is based on the preferential phosphorylation of nucleoside analogs by tumor cells expressing HSV-1 thymidine kinase. However, the use of HSV-1 thymidine kinase is limited in part by the toxicity of the nucleoside analogs. We have used random sequence mutagenesis ...
متن کاملSelective abolishment of pyrimidine nucleoside kinase activity of herpes simplex virus type 1 thymidine kinase by mutation of alanine-167 to tyrosine.
Herpes simplex virus type 1 (HSV-1) encodes a thymidine kinase (TK) that markedly differs from mammalian nucleoside kinases in terms of substrate specificity. It recognizes both pyrimidine 2'-deoxynucleosides and a variety of purine nucleoside analogs. Based on a computer modeling study and in an attempt to modify this specificity, an HSV-1 TK mutant enzyme containing an alanine-to-tyrosine mut...
متن کاملHSV-TK Expressing Mesenchymal Stem Cells Exert Inhibitory Effect on Cervical Cancer Model
A growing area of research is focused on cancer therapy, and new therapeutic approaches are welcomed. Mesenchymal stem cell (MSC)-based gene therapy is a promising strategy in oncology. Intrinsic tropism and migration to tumor microenvironment with off lights are attractive features of this type of cell carrier. In this way, suicide genes have also found a good platform for better performance a...
متن کاملPCR detection of thymidine kinase gen of latent herpes simplex Virus type 1 in mice trigeminal ganglia
Herpes simplex virus type 1 establishes a latent infection in the peripheral nervous system following primary infection. During latent infection, virus genome exhibit limited transcription, with the HSV LATs consistently detected in latency infected ganaglia. Following ocular infection viral latency develops in the trigeminal ganglia. In this study PCR has been used for detection of HSV-1 nuc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- BioTechniques
دوره 27 4 شماره
صفحات -
تاریخ انتشار 1999